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This paper shows that a potential systemwith onemultiple eigenvalue of multiplicity two ormore can assuredly be

madeunstable by infinitesimal positional perturbations. The explicit nature of these pertubatory forces is provided. It

is shown that the matrices that describe these perturbatory forces are not required to commute with the potential

matrix. The general positional perturbatory forces that bring about instability in the perturbed potential system are

shown to include, as special cases, circulatory forces that do and that do not commute with the potential matrix. The

condition on commutativity of matrices is quite stringent, and its removal has a significant effect on generalizing the

conditions that lead to instability. The paper expands the generalized Merkin instability result to include more

general, noncirculatory positional perturbations, and it eliminates restrictions imposed on the perturbations by

commutation requirements. The structure of infinitesimal as well as finite perturbatory matrices that guarantee

instability is obtained. Practical implications of themathematical results to natural and engineered systems are given.

It is pointed out that potential systems with two “nearly” equal frequencies of vibration are, in general, susceptible to

instability, created by “small” perturbatory forces, where the terms nearly and small are quantified.

Nomenclature

Ap = p-by-p real matrix

a, b, c = real numbers
B = three-by-three real matrix
Br = r-by-r real matrix
C = three-by-two real matrix
Cr = r-by-p real matrix
k = stiffness (positive number)
~M, ~K, K = n-by-n real matrices

m = multiplicity of eigenvalue λ
N̂, N = n-by-n real skew-symmetric perturbationmatrices

�Np = p-by-p real skew-symmetric matrix

~P, P̂, P = n-by-n real perturbation matrix

q, x, y = real n vectors
r = n − p
T = n-by-n real orthogonal matrix

tiλ, t
j = orthonormal column vectors of matrix T

zp = real p vector

zr = real r vector
α = real nonzero number
δ, β, ε, γ, η = real numbers
θ = α∕k
Λ̂, Λr

= diagonal matrices

λ = multiple eigenvalue of K
μ = λ2

ρ = ω1 − ω2

ω1, ω2 = frequencies of vibration

I. Introduction

P OTENTIAL systems are important in physics and engineering
because most real-life systems (those that occur naturally and

those that are engineered) are usually modeled as potential systems.
After linearization, the stability of such systems to perturbations has
therefore been a question of considerable and long-standing interest
to the physics, engineering, and mathematics communities. Merkin
discovered a very important and remarkable result that states that, for
a potential system (all of whose frequencies of vibration are identi-
cal), the addition of any circulatory force causes the system to become
unstable [1]. Circulatory force additions to potential systems arise in
many real-life applications ranging from aerospace structures and
aeroelasticity to brake squeal, wheel shimmy, and bipedal motion
[2–7]. Potential forces are represented in linear systems by a sym-
metric stiffnessmatrix (whichwe shall often call the potential matrix,
for short), and systems that have only potential forces are called
potential systems. Circulatory forces are represented by skew-
symmetric matrices, which we shall often call circulatory matrices.
This important result obtained by Merkin [1] was extended by

Bulatovic to say that, if the potentialmatrix and the circulatory (skew-
symmetric) matrix commute, then the addition of a circulatorymatrix
to the potential system causes it to become unstable [8]. Reference [8]
however, does not provide physical insights or address questions of
practical importance in physics and engineering, namely, whether
multiplicity of a few (or even a single one) of the frequencies of
vibration of a potential system would cause the addition to it of a
commuting circulatory matrix to render the system unstable.
Recently, such a generalization of Merkin’s result [1] was provided,
giving insights into the role played by the extent and number of
multiple frequencies of the potential system [9]. It shows that, when
the circulatory and the potential matrices commute, the potential
matrix must have at least two frequencies that are identical; and that
when two (or more) frequencies of the potential system are identical,
then the system becomes unstable when an appropriate infinitesimal
circulatory matrix, which commutes with the potential matrix, is
added to the potential system. It is this central idea that at least two
frequencies of the potential system must be identical when the
circulatorymatrix and the potentialmatrix commute [9] that is central
to this paper and expanded upon here.
The requirement for commutation of the circulatory matrix with

the potential matrix is a fairly strong condition. When the potential
matrix and the circulatory matrix commute, we use the insights
provided by the results in Ref. [9], which point out that it is these
multiple eigenvalues of the potential system that are at the root of
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being able to find (infinitesimal) perturbatory circulatory matrices
that make such potential circulatory systems unstable. In this paper,
we show that this condition of commutativity is not necessary as long
as the potential matrix has at least one multiple eigenvalue. Starting
with the assumption of multiple eigenvalues of the potential system,
the general structure of positional perturbatorymatrices thatmake the
potential system unstable and that do not need to commute with the
potential (symmetric) matrix of the system is obtained. Routes that
make the perturbed potential system unstable in the presence of
multiple eigenvalues of the potential system are explored. The com-
pass of matrices whose addition causes such potential systems to
become unstable is expanded beyond those that are only circulatory
and those that commutewith the potential matrix. It is shown that the
set of these general (infinitesimal) perturbatory matrices, which
includes circulatory matrices that do and do not commute with the
potential matrix, when added to the potential system, guarantee that
their addition leads to instability.
Reference [2] gives a different approach from that given in this

paper. It considers singularities of the stability boundary of systems
of the form �x� Px � 0, where the matrix P is nonsymmetric and
depends on parameters. Points in the parameter space at which the
system has multiple imaginary eigenvalues correspond to singular-
ities of the boundary. It is shown that, when P depends on three
parameters and has a semisimple imaginary eigenvalue with multi-
plicity two, the region of instability lies inside a cone with its apex at
the singular point. The equation of this cone then provides a quanti-
tativemeasure of the unstable region. In essence, thismethod is based
on the first approximation of perturbed eigenvalues, and therefore
considers small perturbations. The approach presented in this paper is
simpler and more direct. It is applicable to systems with imaginary
eigenvalues that can have an arbitrary number of multiplicities, and it
includes positional forces that can have finite intensities.
Consider the potential system described by the equation

~M �q� ~Kq � 0 (1)

where then-by-nmatrix ~M is a positive definitematrix, and ~K is a real
symmetric matrix. The n-vector of generalized coordinates is
denoted by q, and the dots indicate differentiation. The addition of
a perturbing positional force to this system results in the system
described by the equation

~M �q�� ~K� ~P�q � 0 (2)

where ~P is a real matrix. Making the transformation q�t� �
~M−1∕2x�t� and premultiplying Eqs. (1) and (2) by ~M−1∕2, we get
the following equations that describe the potential system and the
perturbed potential system:

�x� Kx � 0 (3)

�x� �K � P�x � 0 (4)

where the symmetric matrix K � ~M−1∕2 ~K ~M−1∕2, and P �
~M−1∕2 ~P ~M−1∕2. Clearly, system (2) is equivalent to system (4), and
we shall from here on consider this system.
The generalized Merkin result states that, when P is skew-sym-

metric, and K and P commute, K necessarily has multiple eigenval-
ues, and the potential system given by Eq. (1) is unstable in the
presence of such a perturbatory skew-symmetric matrix P [9].
This paper deals with the situation where the potential system

described by the matrixK has multiple eigenvalues, and it intends to
expand the set of matrices that makes the perturbed potential system
[Eq. (4)] unstable beyond those that are only circulatory and com-
mute with the matrix K. It also aims to obtain a further expansion to
more general positional perturbatorymatrices that are not necessarily
skew-symmetric, that are not required to commute with K, and that
guarantee instability of the perturbed potential system. Although the
results obtained are valid for symmetric matrices, from practical
considerations, we are interested in 1) stable potential systems in

whichK > 0, and 2) their susceptibility to being destabilized through
the addition of positional perturbatory matrices P [Eq. (4)].
To motivate the results obtained in this paper, let us consider the

simple five-degree-of-freedom potential system described by

�x� Kx � 0 (5)

where x � �x1; x2; x3; x4; x5�T . The potential matrix K is given by

K � diag�k1; k1; k3; k4; k5� (6)

with, ki > 0, i � 1; 3; 4; 5. The eigenvalue k1 of the matrix K has

multiplicity two. Furthermore, we assume that ki ≠ kj for i ≠ j; we
shall relax this condition later on.
Consider the real perturbatory matrix

where α ≠ 0 is any arbitrary (real) number. In the second preceding

equality, we denote the two-by-two skew-symmetric matrix in the

upper left corner ofP by �N2, as well as the block matrices B andC as

shown, which have (real) arbitrary elements in them.
The potential system described by Eq. (5) when perturbed by a

positional force described by the matrix P in Eq. (7) is described by

�x� Kx� Px � 0; or �x�
"
k1I2 0

0 ~k

#
|������{z������}

K

x�
"

�N2 0

C B

#
|�����{z�����}

P

x � 0

(8)

where ~k � diag�k3; k4; k5�. Note that the matricesK andP do not, in

general, commute; although, the matrices k1I2 and �N2 do.
On a closer look at Eq. (8), we observe the following:
1) The commutation of thematrices k1I2 and �N2 in the upper block

is caused by the fact k1 is a multiple eigenvalue of the matrix K, and
the first two equations ofmotion pertain to thismultiple eigenvalue of
K of the potential system.
2) The uncoupled two-degree-of-freedom potential subsystem

involves only these first two equations of motion [see Eq. (5)], as
well as only the coordinates x1�t� and x2�t�. As seen in Eq. (8), it is
subjected to a nonzero (perturbatory) circulatory force provided by

the skew-symmetric matrix �N2. Furthermore, this perturbatory force
leaves this subsystem still uncoupled from the remainder of the five-
degree-of-freedom system. This subsystem formed by the first two
equations (the upper block) in the set of equations given in Eq. (8) is

�
�x1
�x2

�
|{z}

�z2

� k1

�
1 0

0 1

�
|���{z���}

k1I2

�
x1
x2

�
|{z}

z2

�
�

0 α
−α 0

�
|�����{z�����}

�N2

�
x1
x2

�
|{z}

z2

� 0 (9)

The upper two-by-two block k1I2 and the skew-symmetric matrix
�N2 that multiplies the 2-vector z2�t� ≔ � x1 x2 �T commute [see
Eq. (9)], and therefore this two-degree-of-freedom subsystem that
describes the time evolution of the coordinate z2�t� is unstable [8,9].
The instability is a flutter instability. Notice that the reason that k1I2
commutes with �N2 is that the eigenvalues (frequencies of vibration)
of the matrix K (potential system) are identical, as pointed out in
Eq. (1). And, it is this two-degree-of-freedom unstable subsystem,
which is a component of the entire five-degree-of-freedom system
described in Eq. (8), that then renders the entire system unstable.
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3) Thus, irrespective of the dynamics of the “remainder” of the
system (namely, the dynamics of zr�t� ≔ � x3 x4 x5 �T , with sub-
script “r” for remainder), we are assured of the instability of Eq. (8)
because its unstable behavior resides in the subcomponent z2�t� of
the column vector x�t� � � z2�t� zr�t� �T, and the evolution in time
of this unstable subcomponent z2�t� is uncoupled from that of the
remainder of the system. Thus, nomatter what matricesB andCmay
be, system (8) is assuredly unstable.
4) In the special case when C � 0, the matrix P in Eq. (7) re-

duces to

P ≔

2
666666664

0 α 0 0 0

−α 0 0 0 0

0 0 b11 b12 b13

0 0 b21 b22 b23

0 0 b31 b32 b33

3
777777775

�
"

�N2 0

0 B

#
(10)

which is a direct sum and can be written as

P � �N2 � B (11)

In Eq. (11), the matrix �N2 is any nonzero two-by-two skew-
symmetric matrix, and the lower block-diagonal three-by-three
matrix B is an arbitrary three-by-three matrix. The matrices P and

K do not commute, in general, since B and ~k do not [see Eq. (8)]. As
before, the subsystem described by the coordinate z2�t� continues to
be unstable, exhibiting a flutter instability, and thereby makes the
entire system described by Eq. (8) unstable.
5) When C � 0 and B is skew-symmetric, then the matrix P also

becomes skew-symmetric and represents a circulatory force. Denot-
ing this skew-symmetric matrix P by N, it can be written as

N ≔

2
666666664

0 α 0 0 0

−α 0 0 0 0

0 0 0 −β −δ

0 0 β 0 −γ

0 0 δ γ 0

3
777777775

�
"

�N2 0

0 �N3

#
(12)

in which the skew-symmetric matrix �N3 ≔ B has parameters β, δ,
and γ that are arbitrary (real) numbers. When these parameters are
nonzero, the skew-symmetric matrix N does not commute with K

because the matrix �N3 does not commute with the matrix ~k [see
Eq. (8)].With this circulatorymatrixN � P in Eq. (8), the subsystem
described by the coordinate z2�t� continues to be unstable, thereby
making the entire system unstable.
Our example illustrates that infinitesimal circulatory matrices like

N in Eq. (12) that perturb a potential system cause instability when
the potential system has a single multiple eigenvalue without any
requirement that these circulatory matrices commute with the poten-
tial matrix. Note that N is a special case to which the matrix P
[Eq. (7)] reduces when the arbitrary matrix C � 0 and the arbitrary
matrix B is skew-symmetric.
Furthermore, since B is arbitrary, the matrix N includes those

perturbatory matrices that do commute with K and are circulatory.
To see this, simply set B � 0 in Eq. (12); now, the matrices K and
N commute.
6)More importantly,we observe that, nomatter what the dynamics

of the remainder of the system described by the coordinate zr�t�
might be, the subsystem described by Eq. (9) is unstable. Hence, it
does not matter what the other eigenvalues k3, k4, and k5 of the
potential matrix K are because these parameters only affect the
dynamics of the remainder of the system; they have no effect on
the unstable uncoupled subsystem described by the coordinate z2�t�.
Hence, these three parameters, which describe the matrix K, could
have any values wewish, and some of themmight even be allowed to

take to the value of k1 (something we did not allow initially but had
promised to relax); in which case, of course, the eigenvalue k1 of the
potential system (matrix K) would no longer have a multiplicity of
just two, but higher. So, no matter what the multiplicity of an
eigenvalue of K might be, as long as it is greater than two, we can
create a two-degree-of-freedom subsystem with just two of the
(possibly more than two) identical eigenvalues, use an arbitrary

nonzero two-by-two skew-symmetric matrix �N2, and uncouple it
from the rest of the system as in Eq. (8). That would make this
two-degree-of-freedom subsystem unstable, which would then be
sufficient to make the entire system unstable.
7) We chose the skew-symmetric matrix �N2 in Eqs. (7) and (8) so

that the subsystem shown in Eq. (9) is guaranteed to be unstable [8,9].
But, in fact, we could have chosen (instead of the skew-symmetric

matrix �N2) any two-by-two real matrix A2 whose eigenvalues are
complex with a nonzero imaginary part. This is because the replace-

ment of �N2 by such a matrix A2 in Eq. (9) ensures that this subsystem
remains unstable. We will show later on that, in general, this is true
(see Lemma 4). Simple examples of matrices A2 with complex
eigenvalues that have nonzero imaginary parts are

A2 �
�
0 −a
a b

�
; with jaj > jbj∕2 (13)

A2 �
�
−b −a
c b

�
; with ac > b2 (14)

and, more generally,

A2 �
�
a b
c d

�
; with �Trace�A2��2 < 4Det�A2� (15)

where a, b, c, and d are any real numbers that satisfy the respective
inequalities. The eigenvalues of A2 in Eq. (13) are complex, and they
have nonzero imaginary parts; those of A2 in Eq. (14) are purely
imaginary. While matrices A2 shown in Eqs. (13) and (14) may be
considered nongeneric, thematrixA2 in Eq. (15) is generic. Note that,
while these matrices include skew-symmetric matrices, in general,
they are not skew-symmetric.
Thus, a perturbation matrix P that makes the perturbed potential

system described by Eq. (8) unstable is given by

P �
�
A2 0

C B

�
(16)

in which A2 is any two-by-two matrix that has a conjugate pair of
complex eigenvalues with nonzero imaginary parts, and B and C are
matrices that have arbitrary elements in them.
In this paper, we formalize this intuitive reasoning in a more

rigorous manner, where we expand the set of positional perturbatory
matrices P whose addition renders the potential system [Eq. (3)]
unstable to those that are not necessarily skew-symmetric and that do
not necessarily commutewithK. The results provide a deeper under-
standing of the origin and nature of the instability caused by pertur-
bations to potential systems that goes beyond what can be gleaned
only through intuition.

II. Main Results

We begin by considering the potential system described by Eq. (3)

in which the n-by-nmatrixK has an eigenvalue λwhose multiplicity

is m, where 2 ≤ m ≤ n. We shall see in the following that the other

eigenvalues of K will not concern us; they could be all distinct, or

some of them could have multiplicities greater than unity.
SinceK is symmetric, there exists ann-by-n real orthogonalmatrix

T such that TTKT � Λ̂, where Λ̂ is a real diagonal matrix. With no

loss of generality, we can write
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Λ̂ �
�
λIm 0

0 Λn−m

�
(17)

wherewe have placed all the eigenvalues ofK that are distinct from λ,
whatever their multiplicities, in the �n −m�-by-�n −m� lower diago-
nal matrix Λn−m. Using the transformation x�t� � Ty�t� in Eq. (4)

and premultiplying by TT, we get

�y� Λ̂y� P̂y � 0 (18)

where P̂ � TTPT. The real orthogonal matrix T comprises the
successive eigenvectors corresponding to the successive eigenvalues

ofK that lie down the diagonal of Λ̂. The firstm columns ofT are then
the (orthonormal) eigenvectors that correspond to the eigenvalue λ,
and we form the n-by-m matrix

Tλ �
�
t1λ t2λ · · · tpλ · · · tmλ

�
(19)

where tiλ, 1 ≤ i ≤ m, are the orthonormal eigenvectors of K corre-

sponding to the multiple eigenvalue λ. From the remainder of the
(orthonormal) eigenvectors, which correspond to the successive diago-
nal elements of Λ [see Eq. (17)], we form the n-by-(n −m) matrix

TΛ � �
t1 t2 · · · · · · tn−m

�
(20)

The n-by-n orthogonal matrix T can then be written as

T � �
t1λ t2λ · · · tpλ · · · tmλ t1 t2 · · · · · · tn−m

�
(21)

We now partition this matrix T in two submatrices as follows: The
first partition Tp contains the first 2 ≤ p ≤ m eigenvectors corre-

sponding to the eigenvalue λ; the second partition Tr contains the
remainder (hence the subscript r) of the eigenvectors. We thus have

T��TpjTr��
�
t1λ t2λ · · · t

p
λ|�����{z�����}

Tp

jtp�1
λ · · · tmλ t1 t2 · · · · · · tn−m|���������������������{z���������������������}

Tr

�
; 2≤p≤m

(22)

Thematrix Tp is n by p, and the matrix Tr is n by r � �n − p�. We

similarly partition the n-vector y and write y ≔ � zTp zTr �T , where
zp � � y1 y2 · · · yp �T and zr � � yp�1 yp�2 · · · yn �T . Using the
partitioned matrix T given in Eq. (22), we can now write Eq. (18) as"
�zp

�zr

#
�
�
λIp 0

0 Λr

�
|�����{z�����}

Λ̂

�
zp
zr

�
�
"
TT
pPTp TT

pPTr

TT
r PTp TT

r PTr

#
|�������������{z�������������}

P̂

�
zp
zr

�
�0; 2≤p≤m

(23)

where

Λ̂ �
�
λIm 0

0 Λn−m

�
≔

�
λIp 0

0 Λr

�
so thatΛr �

�
λIm−p 0

0 Λn−m

�
;

2 ≤ p ≤ m (24)

As indicated in our intuitive reasoning given in the Introduction,
the aim is now to uncouple the equation of motion of the coordinate
zp�t� from that of the remainder of the system and make the response

zp�t� unstable by adding a circulatory perturbation matrix. Therefore,

we set 1) �Np ≔ TT
pPTp ≠ 0 to be a skew-symmetric matrix and

2) TT
pPTr � 0. The latter condition ensures that the coordinate zp�t�

is uncoupled from the remainder of the system; the former condition
ensures a circulatory perturbation to this subsystem that commutes
with the potential matrix λIp. From Eq. (23), the evolution in time of

the coordinate zp�t� is then given by the equation

�zp � λ1Ipzp � �Npzp � 0 (25)

Since the matrix λ1Ip commutes with the skew-symmetric matrix

�Np, the subsystem described by Eq. (25) is unstable and has a flutter

instability [8,9]. This makes the entire system described by Eq. (23)

unstable.
Later on, we will show more general matrices than �Np in Eq. (25),

beyond those that are only circulatory (skew-symmetric), for which

this subsystem remains unstable (see Result 2).
Remark 1: We note that this result will be true for all partitions

T � �TpjTr�, where 2 ≤ p ≤ m. □

Lemma 1:The addition of a suitable perturbationmatrixP to then-
degree-of-freedom potential system described by Eq. (3) that has an

eigenvalue of multiplicity m with 2 ≤ m ≤ n will cause the system

described by Eq. (4) to become unstable and have a flutter instability

if �Np � TT
pPTp ≠ 0 is a skew-symmetric matrix and TT

pPTr � 0,

2 ≤ p ≤ m. Here, the matrix Tp contains any 2 ≤ p ≤ m (orthonor-

mal) eigenvectors ofK corresponding to the multiple eigenvalue λ of
thematrixK, and thematrixTr contains the remainder, r � n − p, of
the eigenvectors. □

Remark 2: From Eqs. (23) and (25), it is clear that, from a

conceptual standpoint, the resultant instability brought about when
�Np � TT

pPTp ≠ 0 andTT
pPTr � 0 results from two distinct features.

The first feature is the decoupling of the system of equations involv-

ing the coordinate zp from the remainder of the system described by

the coordinate zr; this requires T
T
pPTr to be zero. The second feature

ensures that the decoupled system, which corresponds to themultiple

eigenvalue of K, is subjected to a nonzero circulatory force, i.e., the

skew-symmetric matrix �Np � TT
pPTp ≠ 0, where 2 ≤ p ≤ m. At

root, the instability stems from the presence of the multiple eigen-

value in the potential matrix because it is this that allows the skew-

symmetric matrices �Np and λ1Ip to commute. □

We next show that any matrix P with TT
pPTr ≠ 0 and TT

pPTr � 0
must have a specific structure.
Lemma 2: Consider a partitioned n-by-n real orthogonal matrix

T � �TpjTr�, 2 ≤ p ≤ m. An n-by-nmatrix P satisfies the following

conditions:
1) TT

pPTp ≠ 0 is skew-symmetric.

2) TT
pPTr � 0 if, and only if,

P � T

�
�Np 0

Cr Br

�
TT ≔ TP̂TT (26)

where the p-by-pmatrix �Np ≠ 0 is an arbitrary (real) skew-symmet-

ric, and the matrices Br and Cr are arbitrary (real) matrices that are r
by r and r by p, respectively, with r � n − p. [Arbitrary matrices
mean that their elements are arbitrary (real) numbers.]
Proof:
1) Assume that the matrix P is given as in Eq. (26) with the skew-

symmetric matrix �Np ≠ 0. Then,

TT
pPTp �TT

p�Tp Tr �
"

�Np 0

Cr Br

#"
TT
p

TT
r

#
Tp

� �Ip 0 �
"

�Np 0

Cr Br

#"
TT
pTp

TT
r Tp

#

� �Ip 0 �
"

�Np 0

Cr Br

#"
Ip

0

#
� �Ip 0 �

"
�Np

Cr

#
� �Np ≠ 0 (27)

where we have made use of the orthonormality of the columns of the

matrix T in the second and third equalities. Since �Np is skew-

symmetric, so is TT
pPTp.

Also, the m-by-r matrix
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TT
pPTr � TT

p�Tp Tr �
�

�Np 0

Cr Br

�"
TT
p

TT
r

#
Tr

� � Ip 0 �
�

�Np 0

Cr Br

�"
TT
pTr

TT
r Tr

#

� � Ip 0 �
�

�Np 0

Cr Br

��
0

Ir

�
� � Ip 0 �

�
0

Br

�
� 0 (28)

We have thus shown that, if P has the structure given in Eq. (26)

with the skew-symmetric matrix �Np ≠ 0, then TT
pPTp ≠ 0 and

TT
pPTr � 0.

2) Assume now that TT
pPTp ≠ 0 is skew-symmetric, and

TT
pPTr � 0.

Since the columns of the orthogonal matrix T span Rn, we can
write

PTp � Tp�a1 a2 : : : : : :ap �|������������{z������������}
Lp

�Tr�c1 c2 : : : : : : cp �|�����������{z�����������}
Cr

� TpLp �TrCr

(29)

where ai; i � 1; 2; : : : ; p, are column vectors with p components;
and ci; i � 1; 2; : : : ; p, are column vectors with r � n − p compo-
nents. In the second equality, we have denoted by Lp the p-by-p
(square)matrix whose columns are ai; i � 1; 2; : : : ; p, and byCr the
r-by- p matrix whose columns are ci; i � 1; 2; : : : ; p.
Since TT

pPTp ≠ 0 is skew-symmetric, using Eq. (29), we find that

TT
pPTp � TT

pTp|{z}
Ip

Lp � TT
pTr|{z}
0

Cr � Lp ≠ 0 (30)

Furthermore, since Lp is required to be skew-symmetric, we

denote it by �Np ≔ Lp.

From Eq. (29), we then get

PTp � Tp
�Np � TrCr; �Np ≠ 0 (31)

In a similar manner, since the columns of T span Rn, we have

PTr � Tp�d1 d2 : : : dn−p �|�����������{z�����������}
Dr

� Tr�b1 b2 : : : bn−p �|�����������{z�����������}
Br

� TpDr � TrBr

(32)

As before, di; i � 1; 2; : : : ; n − p � r, are column vectors with p
components; and bi; i � 1; 2; : : : ; n − p, are column vectors with
r � n − p components. The matrix Dr is p by r, and the square

matrix Br is r by r. Since TT
pPTr � 0, using Eq. (32), we get

TT
pPTr � TT

pTp|{z}
Ip

Dr � TT
pTr|{z}
0

Br � Dr � 0 (33)

so that Eq. (32) simplifies to

PTr � TrBr (34)

Combining Eqs. (31) and (34), we then have

P�Tp Tr � � �Tp Tr �
�

�Np 0

Cr Br

�
; �Np ≠ 0 (35)

Noting that T � �Tp Tr � is an orthogonal matrix, Eq. (35) gives

P � T

�
�Np 0

Cr Br

�
TT (36)

where r � �n − p�, �Np is an arbitrary p-by-p nonzero skew-sym-

metric matrix, Br is an arbitrary r-by-rmatrix, and Cr is an arbitrary
r-by-p matrix. Hence, P has the structure given in Eq. (26). □

Lemma 3: If N ≔ P is circulatory (skew-symmetric), then

TT
pNTp ≠ 0 and TT

pNTr � 0 if, and only if,

N � T

�
�Np 0

0 �Nr

�
TT (37)

where �Np ≠ 0 is an arbitrary p-by-p skew-symmetric, and �Nr is an

arbitrary r-by-r skew-symmetric matrix �r � n − p�.
Proof: SettingCr � 0 andBr � �Nr in Eq. (26), the “if” part of the

proof is the same as that in Lemma 2. The “only if” part of the proof is
also identical as in Lemma 2 until Eq. (36). From Eq. (36), if P is
skew-symmetric, thenCr � 0 andBr must be skew-symmetric. This
proves the proposition. □

Lemma 2 leads to the following result.
Result 1: Consider the dynamical system

�x� Kx � 0 (38)

where K is an n-by-n symmetric matrix. If the potential system,
regardless of its other distinct eigenvalues and their respective mul-
tiplicities, has a single eigenvalue λwithmultiplicity 2 ≤ m ≤ n, then
there are an uncountably infinite number of perturbatory matrices P
that do not, in general, commute with K and that make the system

�x� �K� P�x � 0 (39)

unstable. This flutter instability is assured for all matrices

P � T

�
�Np 0

Cr Br

�
TT ≔ TP̂TT (40)

where �Np is an arbitrary nonzero square p-dimensional (2 ≤ p ≤ m)

skew-symmetric matrix, Br is an arbitrary square matrix of dimen-
sion r � n − p, and Cr is an arbitrary r-by-p matrix. Here, T is the
real orthogonal matrix of eigenvectors of K; and its first p eigenvec-
tors, for any 2 ≤ p ≤ m, are any p (of them orthonormal) eigenvec-
tors that belong to the eigenvalue λ.
Proof: From Eq. (40), we find that

TTPT � P̂ �
"

�Np 0

Cr Br

#
(41)

We can rewrite Eq. (23) [or, alternatively, Eq. (18)] in the notation
developed as"

�zp

�zr

#
�

"
λIp 0

0 Λr

#
|�������{z�������}

Λ̂

"
zp

zr

#
�

"
�Np 0

Cr Br

#
|������{z������}

P̂

"
zp

zr

#
� 0 (42)

where the matrix �Np is an arbitrary nonzero skew-symmetric matrix.
The matrices Br and Cr have (real) arbitrary elements. Hence, the

matrices Λ̂ and P̂ do not commute in general. Since thematricesK �
TΛ̂TT and P � TP̂TT commute if, and only if, the matrices Λ̂ and P̂
commute, the matricesK andP do not therefore commute in general.
The coordinate zp�t�, which is uncoupled from the remainder of the

system, is unstable (flutter) since the matrices λIp and �Np commute;

and �Np is a nonzero skew-symmetric matrix [8,9]. Hence, the system

described byEq. (42) is unstable; therefore, so is the systemdescribed
by Eq. (39).
Later on, we show more generally that, in Eqs. (41) and (42),

instead of the skew-symmetric matrix �Np, anyp-by-pmatrix that has
at least one complex eigenvaluewhose imaginary part is nonzero can
be used (see Lemma 4 and Result 2). □
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Remark 3:Result 1 has a geometrical interpretation. If we think of
the matrix P as a linear operator, then P̂ is the representation of this
operator in the orthonormal basis formed by the eigenvectors of K.
Thus, Result 1 says that all operators whose representation in the

basis comprising the eigenvectors of K is of the form P̂ shown in

Eq. (40) (with �Np ≠ 0) when added to the potential systemwill cause

it to become unstable. In the basis set given by the columns of the
matrix T, we see fromEq. (34) that the space spanned by the columns
of Tr [see Eq. (22)] is an invariant space of the operator P. The
smallest (in the sense of inclusion) such invariant space occurs when
p � m, where m is the multiplicity of λ. In a similar fashion, when
Cr � 0 in Eq. (41), from Eq. (31), it is seen that the space spanned by
the column vectors Tp is an invariant space of the operator P, and the
largest (in the sense of inclusion) such invariant space occurs when
p � m. □

Remark 4:Only in the nongeneric case inwhich the eigenvalue λ of
then-by-nmatrixK hasmultiplicity n (so thatK has only one distinct

eigenvalue) do the matrices Λ̂�K� and P̂�P� necessarily commute

because, then, Λr � λIr in Eq. (42) so that Λ̂ � λIn, and hence Λ̂
commutes with all matrices P̂. □

Remark 5:The elements of thematricesBr andCr are arbitrary real

numbers, and hence P̂�P� includes skew-symmetric matrices that do,

and that do not, commute with Λ̂�K�. □

Since perturbations created by circulatory matrices are important
from a physical standpoint, we use Lemma 3 and state this as a
separate result. These circulatory matrices are a special case of the
perturbation matrix P [Eq. (40)], which we denote by N (see
Lemma 3).
Corollary 1: Consider the dynamical system

�x� Kx � 0 (43)

where K is an n-by-n symmetric matrix. If the potential system,
regardless of its other distinct eigenvalues and their respective mul-
tiplicities, has a single eigenvalue λwithmultiplicity 2 ≤ m ≤ n, then
there are an uncountably infinite number of circulatory matrices N
that do not, in general, commute with K and that make the system

�x� �K� N�x � 0 (44)

unstable. This flutter instability is assured for all matrices

N � T

�
�Np 0

0 �Nr

�
TT ≔ TN̂TT (45)

where �Np is an arbitrary nonzero square p-dimensional (2 ≤ p ≤ m)

skew-symmetricmatrix, and �Nr is an arbitrary square skew-symmetric
matrix of dimension r � n − p. Here, T is the real orthogonal matrix
of eigenvectors of K; and its first p eigenvectors, for any 2 ≤ p ≤ m,
are any p (of the m orthonormal) eigenvectors that belong to the
eigenvalue λ.
Proof: By setting Cr � 0 and Br � �Nr in Eq. (42), we get the

equation of motion:

�
�zp
�zr

�
�

�
λIp 0

0 Λr

�
|������{z������}

Λ̂

�
zp
zr

�
�

�
�Np 0

0 �Nr

�
|������{z������}

N̂

�
zp
zr

�
� 0 (46)

The result now follows immediately from Lemma 3 by reasoning
along the same lines as the proof in Result 1. □

Remark 6: In general, the matricesΛr and �Nr do not commute, and

therefore Λ̂ and N̂ do not commute. However, since �Nr is an arbitrary
skew-symmetric matrix in Eq. (46), it includes those matrices that do
commute withΛr. Hence, the structure of the circulatory matrixN in
Eq. (45) includes those that commute with and those that do not
commutewith thematrixK. Note that thematricesK andN commute

if, and only if, the matrices Λr and �Nr commute. □

Remark 7: The corresponding upper left diagonal blocks of Λ̂ and

N̂ in Eq. (46) always commute with each other, i.e., λIp and �Np

always commute; it is this commutative property of the skew-

symmetric matrix �Np that causes the first equation in the coordinate

zp, which is uncoupled from the coordinate zr, to be unstable, thereby
making the entire system unstable.
We now expand the set of perturbation matrices P in Eq. (40) to

those that contain more general matrices than the skew-symmetric

matrix �Np and yet leave the perturbed potential system unstable.

Lemma 4: Let Ap be any real p-by-p matrix that has at least one
complex eigenvalue with a nonzero imaginary part. Then, the sub-
system

�zp � kIpzp � Apzp � 0; 2 ≤ p ≤ m (47)

is unstable.
Proof: Let γ 	 iη, η > 0, be a pair of complex eigenvalues of the

matrixAp. Hence,Apw � �γ � iη�w, wherew ≠ 0 is an eigenvector

of Ap corresponding to the eigenvalue γ � iη. Using the ansatz

zp�t� � eλtw in Eq. (47), we obtain the relation

�λ2Ip � kIp � Ap�w � �λ2 � �k� γ� � iη�w � 0 (48)

from which it follows that λ is complex and has a positive real part.
Hence, by the ansatz, the system described by Eq. (47) is unstable
(flutter). Note that Ap includes the set of nonzero skew-symmetric

matrices �Np. □

Lemma 4 leads to a further generalization of Result 1.
Result 2: Consider the dynamical system

�x� Kx � 0 (49)

where K is an n-by-n symmetric matrix. If the potential system,
regardless of its other distinct eigenvalues and their respective mul-
tiplicities, has a single eigenvalue λwithmultiplicity 2 ≤ m ≤ n, then
there are an uncountably infinite number of perturbatory matrices P
that do not, in general, commute with K and that make the system

�x� �K� P�x � 0 (50)

unstable. This flutter instability is assured for all matrices

P � T

�
Ap 0

Cr Br

�
TT ≔ TP̂TT (51)

where Ap is an arbitrary square p-dimensional (2 ≤ p ≤ m) matrix,

which has at least one complex eigenvalue whose imaginary part is
nonzero; Br is an arbitrary square matrix of dimension r � n − p;
and Cr is an arbitrary r-by-p matrix. Here, T is the real orthogonal
matrix of eigenvectors of K; and its first p eigenvectors, for any
2 ≤ p ≤ m, are any p (of the m orthonormal) eigenvectors that
belong to the eigenvalue λ.
Proof: Replacing �Np by Ap in Eq. (42), we get�

�zp

�zr

�
�

�
λIp 0

0 Λr

�
|������{z������}

Λ̂

�
zp

zr

�
�

�
Ap 0

Cr Br

�
|������{z������}

P̂

�
zp

zr

�
� 0 (52)

Using Lemma 4, and noting that the matrix Ap makes the sub-
system in Eq. (47) unstable, the result follows. □

Examples of Ap when p � 2 are given in Eqs. (13–15). When
2 < p ≤ m, a simple p-by-pmatrix Ap that has at least one complex

eigenvalue whose imaginary part is nonzero is

Ap �
�
A2 0

Fj Ej

�
(53)
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in which j � p − 2, and A2 is any two-by-two real matrix that has a
pair of complex conjugate eigenvalues whose imaginary parts are

nonzero. The matrix Fj is j-by-2, and Ej is j-by-j; both of these

matrices have arbitrary (real) elements.
Replacing �Np by the matrix Ap [Eq. (51)] in Lemmas 1 and 2, we

get the following more general results whose proofs follow the same
lines as those in Lemma 1 and Lemma 2.
Lemma 5: The addition of a suitable perturbation matrix P to the

n-degree-of-freedom potential system described by Eq. (3) that has
an eigenvalue of multiplicitym with 2 ≤ m ≤ n will cause the system

described by Eq. (4) to become unstable and have a flutter instability if

Ap � TT
pPTp is amatrix that has at least one eigenvaluewith anonzero

imaginary part, and TT
pPTr � 0, 2 ≤ p ≤ m. Here, the matrix Tp

contains any 2 ≤ p ≤ m (orthonormal) eigenvectors ofK correspond-
ing to the multiple eigenvalue λ of the matrix K, and the matrix Tr

contains the remainder, r � n − p, of the eigenvectors. □

Lemma 6: Consider a partitioned n-by-n real orthogonal matrix
T � �TpjTr�, 2 ≤ p ≤ m. An n-by-nmatrix P satisfies the following

conditions:
1) TT

pPTp is any p-by-p matrix that has at least one complex
eigenvalue with a nonzero imaginary part.
2) TT

pPTr � 0 if, and only if,

P � T

"
Ap 0

Cr Br

#
TT ≔ TP̂TT (54)

where the p-by-pmatrix Ap is an arbitrary (real) matrix with at least

one complex eigenvalue whose imaginary part is nonzero, and the
matricesBr andCr are arbitrary (real) matrices that are r by r and r by
p, respectively, with r � n − p. □

It is useful to particularize Result 2 for the case when p � 2, no
matter what the multiplicity of the repeated eigenvalue λ of the
potential matrix K (see Remark 9), and no matter what its other
eigenvalues and their respective multiplicities are (Remark 9).The

following section uses this result.
Corollary 2: If the potential system

�x� Kx � 0 (55)

whereK is an n-by-nmatrix, has an eigenvaluewith multiplicity two

(ormore), then this system can bemade unstable by the addition of an
uncountably large number of infinitesimal positional perturbatory
matrices P that do not commute with K.
Proof: Assume that the matrix K has an eigenvalue λ with multi-

plicity 2 ≤ m < n. Let T be a real orthogonal matrix such that

K � TΛTT . With no loss of generality, we can write

Λ � diag�λ; λ; λ3; λ4; : : : ; λn� (56)

A total of �m − 2� eigenvalues in the list λ3; λ4; : : : ; λn in Eq. (56)
has the value λ. Using the transformation x�t� � Ty�t�, we obtain the
equation �

�z2
�zr

�
�

�
λI2 0

0 Λn−2

�
|��������{z��������}

Λ̂

�
z1
zr

�
�

�
0

0

�
(57)

where the 2-vector z2�t� � �y1; y2�T, Λn−2 � diag�λ3; λ4; : : : ; λn�,
and zr�t� � �y3; y4; : : : ; yn�T . The addition of a perturbatory matrix
of the form

P̂ �
�

A2 0

Cn−2 Bn−2

�
(58)

where A2 is an arbitrary (nonzero) two-by-two matrix that has a
complex eigenvalue whose imaginary part is nonzero, Bn−2 is any
arbitrary square matrix of dimension n − 2, and Cn−2 is an arbitrary

matrix of dimension (n − 2)-by-2, will cause the system

�
�z2
�zr

�
�
�
λI2 0

0 Λn−2

�
|�������{z�������}

Λ̂

�
z2
zr

�
�
�

A2 0

Cn−2 Bn−2

�
|���������{z���������}

P̂

�
z2
zr

�
�
�
0

0

�
(59)

to be unstable since the two-degree-of-freedom uncoupled subsys-

tem described by the coordinate z2�t� is unstable, as shown in

Lemma 4.
For simplicity, one could use a two-by-two skew-symmetric

matrix �N2 ≠ 0 for A2 in Eq. (59) or those given in Eqs. (13–15).

The matrices Λ̂�K� and P̂�P� do not commute, in general, sinceBn−2
and Cn−2 have arbitrary elements.
Were we to be interested only in circulatory perturbations, we

would set Cn−2 � 0 and choose the elements of A2 and Bn−2 so that

they were skew-symmetric.
Comparing Eq. (16)with thematrix P̂ given inEq. (58),we see that

whatwehad intuited in the Introduction section is indeed true. □

Remark 8:Clearly, all that is needed for the positional perturbatory

matrix P to make the perturbed system given in Eq. (59) unstable in

flutter is for the potential matrix K to have just one multiple eigen-

value with only a multiplicity of two. □

Remark 9:On restricting the perturbatory matrix in Eq. (51) to the

case whenCr � 0, the operator P̂ can be thought of as the direct sum

of the operators Ap and Br so that we have

P̂ � Ap � Br (60)

where Ap is any p-by-p matrix that has at least one pair of complex

conjugate eigenvalues with nonzero imaginary parts, and Br is an

arbitrary r-by-r matrix �r � p − n�. The matrix P � TP̂TT would

then make the system �x� �K� P�x � 0 unstable.
RestrictingAp to being skew-symmetric so that �Np ≔ Ap, Eq. (60)

reduces to

P̂ � �Np � Br (61)

A further restriction on Br to a skew-symmetric matrix �Nr ≔ Br

gives

N̂ ≔ P̂ � �Np � �Nr (62)

and we now get the result obtained for circulatory perturbations.‡.

□

Remark 10: We can use the arguments developed earlier in this

paper for other distinct eigenvalues besides λwhosemultiplicities are

greater than one if the potential system has such eigenvalues (see the

Example section). □

Remark 11:Based on Result 2, we have the following observation.

For any n-by-n orthogonal matrix T � �TpjTn−p�, 2 ≤ p ≤ m, and

any two real n-by-n matrices (m ≤ n),

Λ̂� diag�λIp;Λ�; and P̂�
�
Ap 0

Cr Br

�
; 2≤p≤m (63)

whereΛ is a diagonal matrix, Ap is a p-by-p arbitrary matrix that has

at least one complex eigenvalue with a nonzero imaginary part Br,

r � n − p is an r-by-rmatrix with arbitrary elements, andCr is an r-
by-p matrix with arbitrary elements, the perturbed potential system

�x� �K� P�x � 0 (64)

with K � TΛ̂TT and P � TP̂TT is unstable and has a flutter insta-

bility. The matrices K and P do not commute in general. □

‡Personal communication with J. Awrejcewicz of the Lodz University of
Technology in Lodz, Poland on 13 March 2018.
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III. Example

Consider the potential system described by the equation

�x� Λ̂x � 0 (65)

where the potential matrix

Λ̂ � diag�a; a; a; b; b; c; d� (66)

with a ≠ b ≠ c ≠ d.
We start by considering the addition of circulatory forces (matrix)

to this system so that the perturbed system is described by

�x� Λ̂x� N̂x � 0 (67)

The structure of the various (infinitesimal) circulatory matrices N̂

that, in general, do not commute with Λ̂ and that will cause this

perturbed potential system to become unstable are shown in Fig. 1.

The basic idea is to 1) uncouple a potential subsystem, or part thereof,
withmultiple eigenvalues from the remainder of the potential system;

then 2) add a nonzero skew-symmetric matrix (perturbation) to this

uncoupled subsystem while still keeping this subsystem uncoupled

from the remainder of the system; and finally 3) add an arbitrary

circulatory perturbation to the remainder of the system, keeping it

uncoupled from the subsystem chosen in Eq. (1). As stated before,

when the matrices N̂ and Λ̂ do not commute, the matrices K and N
also do not commute.
We show in Fig. 1 the potential system defined by the matrix Λ̂ and

the structure of the circulatory matrices N̂ � N̂i, i � 1; 2 : : : ; 6, that
when used in Eq. (67) ensure instability in this perturbed potential

system; the elements ofmatrices with these structures can be chosen so

that they do not commutewith Λ̂ and yetmake the systemdescribed by
Eq. (67) unstable. Fornow, arbitrarynonzero skew-symmetricmatrices

are shown by slanted hatched lines, and arbitrary skew-symmetric

matrices are shown by vertical hatched lines. By “arbitrary,” we mean

that the matrix elements are arbitrary real numbers.
The structure of thematrix N̂1 is such that it isolates the upper two-

degree-of-freedom subsystem from the potential system (matrix Λ̂).
Although the multiplicity of the eigenvalue a is three in the matrix Λ̂,
this two-degree-of-freedom system is thought of as a subsystemwith

a multiple eigenvalue a whose multiplicity is two (see Fig. 1b). To
ensure the (flutter) instability of this two-degree-of-freedompotential

subsystem, and therefore instability of the entire seven-degree-of-

freedom circulatory system shown in Eq. (67), when perturbed by a

circulatorymatrix, an arbitrary nonzero two-by-two skew-symmetric
matrix (shown by slanting hatched lines) is used while ensuring that

this subsystem remains uncoupled from the rest of the system. The
diagonal block shown with vertical hatching is any square skew-
symmetric matrix whose elements are arbitrary real numbers. Hence,

in general, the matrices Λ̂ and N̂1 do not commute. However, the set

of matrices that have the structure shown in N̂1 also includes all the

skew-symmetric matrices that do commute with Λ̂. For example,

were this arbitrary five-by-five skew-symmetric lower diagonal block
(with vertical hatching) chosen to be zero, then, indeed the two

matrices Λ̂ and N̂1 would commute.
Similarly, the structure of the matrix N̂2 considers the upper three-

degree-of-freedom subsystem from the potential system (matrix Λ̂)
with themultiple eigenvalueawithmultiplicity three (see Fig. 1c). To
ensure instability of this three-degree-of-freedom potential circula-
tory subsystem, it has an arbitrary nonzero three-by-three skew-
symmetric matrix (shown by slanting hatched lines) while ensuring

that this subsystem remains uncoupled from the rest of the system.
The diagonal block shown in Fig. 1c with vertical hatching is any
arbitrary skew-symmetric matrix whose addition to the potential

system (Λ̂ matrix) continues to leave the three-by-three subsystem

uncoupled from the rest of the dynamics. Again, Λ̂ and N̂2 do not
commute, in general. But, as before, if we choose the vertically

hatched matrix in the lower diagonal block of N̂2 to be the zero

matrix, then they would. The set of matrices N̂2 that can be used

includes all those that commute with Λ̂.
When the lower two-degree-of-freedom subsystem from the

potential system (matrix Λ̂) with the multiple eigenvalue a with
multiplicity two is chosen as the subsystem (see Fig. 1d), to ensure

its instability, the structure of the matrix N̂3 has the two-by-two
nonzero skew-symmetric matrix block (slanted hatching) so that this
block is uncoupled from the rest of the dynamics of the system. The

matrix Λ̂ is shown again for convenience in Fig. 1a at a level with the

matrix N̂3 so that this two-degree-of-freedom system, which is differ-

ent from the one used in N̂1, can be easily identified. The remainder of

the diagonal blocks (shownbyvertical hatched lines) of thematrix N̂3

are skew-symmetric. The one-by-one block in the upper left corner is
therefore just a zero, as shown.
As pointed out in Remark 10, the structure of N̂4 shown in Fig. 1e

permits the two-degree-of-freedom subsystem from the potential sys-

tem (matrix Λ̂) with themultiple eigenvalue b that hasmultiplicity two

(see Fig. 1e) to be made unstable. To ensure this potential circulatory

subsystem’s instability, N̂4 has the corresponding arbitrary two-by-two

Fig. 1 Structure of circulatory perturbations of potential system (65) that will make the perturbed potential system unstable. Slanted hatching shows
nonzero skew-symmetric matrices, and vertical hatching shows arbitrary skew-symmetric matrices.

UDWADIA AND BULATOVIC 4113

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

SO
U

T
H

E
R

N
 C

A
L

IF
. o

n 
Se

pt
em

be
r 

21
, 2

02
0 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.J
05

92
41

 



nonzero skew-symmetric matrix (shown by slanted hatching in
Fig. 1e), and this block is uncoupled from the remainder of the
dynamics of the system. The other skew-symmetric diagonal blocks
shown by vertical hatchings contain arbitrary elements. The set of

matrices with the structure shown in N̂4 also includes matrices that

commute with Λ̂. For example, were the vertically hatched blocks

chosen to be zero matrices, then the matrices Λ̂ and N̂4 would com-
mute. Theywouldalsocommute if the uppervertically hatchedblock is
any skew-symmetric matrix and the lower vertically hatched block is

the zero matrix. The skew-symmetric matrix N̂4 includes all block

diagonal skew-symmetric matrices that commute with Λ̂.
A more general structure N̂5 than that shown by N̂4 for the skew-

symmetric matrix that keeps this chosen two-degree-of-freedom
circulatory subsystem unstable (and decoupled from the rest of the

system) is shown in Fig. 2a. Here, the additional matrices S and −ST
shown by the vertical hatched lines have arbitrary elements. When

S ≠ 0, N̂5 does not commute with Λ̂.
In a similar way, instead of using the matrix structure N̂3 shown in

Fig. 1d, we could have used (as shown in Fig. 2b) a more general

skew-symmetric matrix structure (denoted by N̂6) that makes the
same two-degree-of-freedom subsystem as in Fig. 1d with the multi-
ple eigenvaluea (that hasmultiplicity two) unstable, just as thematrix

N̂3 has. Here, the columnvector e shown by the vertical hatched lines

is arbitrary. When e ≠ 0, N̂6 does not commute with Λ̂.
As stated in Remark 10, for any orthogonal matrix T, consider the

potential system �x� Kx � 0 with K � TΛ̂TT , where Λ̂ has the
structure given in Eq. (66). Addition of a circulatory (infinitesimal)
perturbation to this system given by the skew-symmetric matrices

N � TN̂iT
T where the matrices N̂i, i � 1; 2; : : : ; 6, have any of the

structures discussed earlier in this paper and shown in Figs. 1 and 2
will cause the potential circulatory system �x� �K� N�x � 0 in
which the matrices K and N do not commute (in general) to be
unstable.
Equation (61) states that we can also have perturbatory matrices P

that need not be circulatory to create instability. Instead of using
nonzero skew-symmetric matrices that have arbitrary real elements
in them, shown by the vertical hatching in Figs. 1 and 2, we could use
any arbitrarymatrix (of the proper size) wherever thevertical hatchings
are shown in these figures. The perturbed potential system �x� �K �
P�x � 0 will remain unstable because of the uncoupled subsystems
that belong to the potential matrix that are made unstable by the
presence of the nonzero skew-symmetric matrices that are shown by
the slanted hatchings in Figs. 1 and 2. For example, instead of using the

circulatory matrix structure with N̂ � N̂5 (see Fig. 2a) in Eq. (67) to
make the perturbed potential system unstable, we could use the matrix

structure P̂5 shown inFig. 3a,which need not be circulatory, andwhich

does not commutewith Λ̂ in general; yet, it guarantees instability of the
perturbed potential system. The vertically hatched area in Fig. 3a now
contains any arbitrary matrix elements; the slanted hatched area con-

tains the two-by-two nonzero skew-symmetric matrix, as in N̂5 in
Fig. 2a. Or, as in Eq. (41), one could use an even more general

perturbatory matrix structure P̂, shown in Fig. 3b, which again need

not commute with Λ̂ and which makes the perturbed potential system
unstable. Elements of the matrix in the vertically hatched area are
arbitrary, and the slanted hatched area has a skew-symmetric matrix.

Finally, while we have used nonzero skew-symmetric matrices
shown by the slanted hatched regions in Figs. 1–3, by Result 2, all
these skew-symmetric matrices � �Np� in these regions in all three
figures can each be replaced by matrices Ap of the appropriate dimen-

sions, which have at least one pair of complex conjugate eigenvalues
with a nonzero imaginary part [see Eqs. (13–15), and (53)]. See Fig. 3.
This example shows some of the explicit structures that the pertur-

batory matrices can have and the routes to guarantee that the potential
system [Eq. (65)] when perturbed by them is assuredly unstable. It
shows that there are an uncountably infinite number of positional
perturbatorymatricesP � TP̂TT , both circulatory and noncirculatory,

which do and do not commute with K � TΛ̂TT , that can perturb a
potential systemandmake it unstable if the potentialmatrixhas a single
repeated eigenvalue with multiplicity of two (or more).
More generally, routes to instability in like manner can be tailored

(through the use of appropriate matrices P̂ as pointed out in Result 1
and in Corollary 1) for any n-by-n potential matrix that has just a
single multiple eigenvalue with a multiplicity of only two. There are
thus both circulatory and noncirculatory matrices that can be used as
positional perturbations to such a potential matrix to ensure its
instability when so perturbed. There is no requirement that these
perturbatory matrices must commute with the potential matrix.

IV. Engineering Application of the Mathematical
Results

The aforementioned results show that, if a stable potential system
has even a single eigenvalue that has just a multiplicity of two, the
perturbed potential system can be made unstable by 1) isolating the
two-degree-of-freedom potential subsystem that has the multiple
eigenvalue from the remainder of the system; 2) adding an arbitrary
nonzero perturbing circulatory force (matrix) to this subsystem,
keeping it isolated from the remainder of the system; and 3) adding
positional forces to the remainder of the potential system prettymuch
as we please but ensuring that these added forces keep the dynamics
of the perturbed two-degree-of-freedom subsystem (in steps 1 and 2)
uncoupled from that of the rest of the system (see Fig. 3b, for
example). [For simplicity, in the aforementioned step 2, we have
used a circulatory force (matrix). Instead of a circulatory matrix, any
two-by-two matrix with a complex eigenvalue whose imaginary part
is nonzero would do as well; see Eq. (58).]
We see that the critical element in creating instability in a stable

potential system is the presence of a multiple eigenvalue of the
potential matrix. If such a multiple eigenvalue exists, then even an
infinitesimal “whiff” of a circulatory matrix appropriately added to
the potential system, as in step 2, makes it unstable. Thus, in order to
evaluate the practical and engineering impact of these mathematiza-
tions, we need to ask the following question: Domultiple eigenvalues
actually occur in naturally occurring and in engineered systems?
Multiple eigenvalues (frequencies of vibration) do occur in natural

and engineered systems, especially when a physical system shows
considerable symmetry or when it is constrained in special ways.
From a practical viewpoint, it occurs in spacecraft systems, tall
building vibrations caused by strong earthquake ground shaking,
and automotive systems. For example, the fourth bending mode
could have the same frequency as the second torsional mode ofFig. 2 Alternative structures for a) N̂4 and b) N̂3.

Fig. 3 Vertical hatched area is filled by any arbitrary matrix elements.
Slanted hatched area is filled by any nonzero skew-symmetric matrix or
any matrix that has an eigenvalue with a nonzero imaginary part.
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vibration in a tall building structure or a spacecraft structure.Multiple
frequencies of vibration also arise commonly in automotive struc-
tures. Often, when complex systems are modeled and simulated by
hundreds, and often thousands, of degrees of freedom, there is a
likelihood of obtaining one ormore frequencies of vibration that have
multiplicities of two or more. Such computational results at times do
show “identical” frequencies, although they may not be mathemati-
cally (exactly) so because of limitations of computational accuracy.
However, the foregoing mathematizations ask for two frequencies

of vibration to be mathematically (exactly) equal; to see if this
requirement is really too stringent when dealing with real-life
dynamical systems, it behooves us to investigate what might happen
when two frequencies of vibration are close, or very close, but not
mathematically (exactly) the same. For, after all, that two frequencies
of a physical system are the same is generally assessed by experi-
ments; and experiments have limits to the accuracy of their findings.
In other words, from a practical perspective, onewould need to know
if the recipe provided in the aforementioned three steps still engen-
ders instability in a potential system even when two frequencies of
vibration are “close” to one another or are deemed to be the “same”
within known experimental error bounds. And, then, the obvious
question arises: How does one define close?
At the core, the instability is generated by considering just the two-

degree-of-freedom subsystem (a component of the entire potential
system) that has a multiple eigenvalue. It is then enough to explore
subsystems like thosedescribed inEq. (9) inwhich thepotential system
has a multiple eigenvalue of multiplicity two and for which we know
that an infinitesimal value of α (a whiff of a circulatory perturbing
force)willmake the subsystemunstable. See Fig. 1a.Our questions are
then the following: Would this continue to be the case even when the
eigenvalues are not exactly the same but close? How close?
Hence, from practical considerations, we are led to consider the

stability of the two-degree-of-freedom potential subsystem�
�x1

�x2

�
|{z}

�z2

� k

�
1 0

0 1

�
|����{z����}

kI2

�
x1

x2

�
|{z}

z2

�
�
ε 0

0 0

��
x1

x2

�
|{z}

z2

�
�

0 α

−α 0

�
|�����{z�����}

A2

�
x1

x2

�
|{z}

z2

� 0; α ≠ 0 (68)

in which two eigenvalues of the potential matrix are k� ε, k > 0.
The characteristic polynomial p�λ� of this system is λ4�

�2k� ε�λ2 � α2 � εk� k2. Setting μ � λ2 in the biquadratic, we
obtain the quadratic equation

μ2 � �2k� ε�μ2 � α2 � εk� k2 � 0 (69)

whose roots are

μ1;2 � λ21;2 � −
�2k� ε�

2
	 1

2

������������������
ε2 − 4α2

p
When the roots μ1;2 are complex, the characteristic polynomial p�λ�
of Eq. (68) has a root with a positive real part and the subsystem
described by Eq. (68) is unstable (flutter). Clearly, when ε � 0 and
the eigenvalues of the potential matrix are both (exactly) equal to k,
only an infinitesimal value of α would suffice to cause instability
since μ1;2 would then be complex numbers. When ε ≠ 0, μ1;2 is

complex as long as

4α2 > ε2; or jαj > jεj
2

(70)

and the instability of Eq. (68) is thereby assured.
We nondimensionalize Eq. (68) by using the transformations

x1�t� � �x1x


1�t�, x2�t� � �x2x



2�t�, and τ � ���

k
p

t, where 1) x
1�t�,
x
2�t�, and τ are dimensionless; and 2) �x1 and �x2 are constants with
dimensions. We thus obtain the dimensionless equations

�
x
001

x
002

�
�
�
1 0

0 1

��
x
1
x
2

�
�1

k

�
ε 0

0 0

��
1 0

0 1

��
x
1
x
2

�
�1

k

�
0 α

−α 0

��
x
1
x
2

�
�0

(71)

where the primes now indicate differentiation with respect to the
dimensionless time τ. Let ω1 and ω2 be the two dimensionless
frequencies of vibration of the two-degree-of-freedom (unperturbed)

potential system. Then, ω2
1 � 1� ε∕k, and ω2

2 � 1. Thus, the dis-
crepancy in the dimensionless frequency is given by

ρ ≔ ω1 − ω2 �
������������
1� ε

k

r
− 1 (72)

so that

jεj � 2k

����ρ� 1

2
ρ2
���� (73)

From Eq. (71), a measure of the (dimensionless) magnitude of the
circulatory force can be taken to be jθj ≔ jαj∕k. Equation (70) then
informs us that, when

jθj >
����ρ� 1

2
ρ2
���� (74)

the system in Eq. (71) is guaranteed to be unstable. We note that the
“remainder” of the system, of which the subsystem in Eq. (68) is a
part (and which we have not considered here), might also be unstable
andwith even smaller perturbational forces; Eq. (74) thus gives only a
sufficient condition to make the entire system unstable.
Oneway of restating this is the following:When the dimensionless

frequencies of the (uncoupled) two-degree-of-freedom potential sub-
system, which is used to bring about destabilization, are not exactly
the same and differ by jρj ≪ 1, subsystem (71) is made assuredly
unstable by a dimensionless circulatory perturbation measured (in
magnitude) by jθj, whose magnitude is given in Eq. (74). The
magnitude of the circulatory perturbation jθj required to cause insta-
bility therefore increases with the (dimensionless) discrepancy jρj
from equality between the two frequencies. Hence, a small, or
minute, difference O�jρj� between the frequencies requires a small,
or minute, circulatory perturbation O�jθj� that guarantees instability
of the subsystem, and therefore of the entire potential system. As
pointed out in Result 2, the perturbatory matrix for the entire system
need not be circulatory, and it can have the general form shown in
Eq. (63) (see Fig. 3b).
From a practical standpoint, Eq. (74) provides a result that has

relevance to real-life systems that have two close, although not
identical, frequencies of vibration. It shows that such systems can
be dangerously susceptible to instabilities created by small positional
perturbations. The closer the two frequencies get to being identical,
the smaller the circulatory perturbations needed to cause these flutter
instabilities.

V. Conclusions

The paper’s main contribution is the central result that stable
potential systems whose matrices have one or more eigenvalues with
multiplicity greater than one can lose their stability under infinitesi-
mal positional perturbations that need not be circulatory and that need
not commute with the potential matrix. Routes to instability that rely
on keeping a subsystem of such a potential system unstable and
uncoupled from its remainder are demonstrated. Both finite and
infinitesimal perturbatory matrices are included. This leads to the
development of the explicit structure of general matrices, and not just
circulatory matrices, that are not required to commute with potential
matrices and that guarantee instability when such potential systems
are perturbed by them. These general perturbatory matrices that
guarantee instability encompass the set of circulatory matrices that
commute with, and that do not commute with, the potential matrix.

UDWADIA AND BULATOVIC 4115

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

SO
U

T
H

E
R

N
 C

A
L

IF
. o

n 
Se

pt
em

be
r 

21
, 2

02
0 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.J
05

92
41

 



Results obtained to date state that, when the circulatory matrix

commutes with the potential matrix, the potential system when per-

turbed by such a circulatory matrix can be made unstable using

arbitrarily small circulatory matrices [8,9]. The property that two

matrices commute is a fairly strong requirement, and the paper shows

that this requirement can be eliminated. It uses the underlying funda-

mental reason for this (mathematical) commutation result that the

potential matrix has one or more multiple eigenvalues [9]. It is shown

that, if the potential matrix has even a single repeated eigenvalue with

just a multiplicity of two, there exists an uncountably infinite set of

general positional perturbatorymatrices thatmake the perturbed poten-

tial system unstable. Circulatory matrices that do and do not commute

with the potentialmatrix and cause the perturbed potential system to be

unstable are special cases of these general perturbatory matrices.

The paper thus significantly expands previous generalizations of

Merkin’s result [1] by including in the set of circulatory perturbations

(matrices) that cause instability in potential systems those that do not

commute with the potential matrix and are not circulatory. It goes

beyond presently known results to more general (noncirculatory)

perturbatory matrices while simultaneously eliminating any commu-

tation requirements.

Practical engineering takeaways from the mathematical results

developed are provided. When two frequencies of vibration of a

potential system are (exactly) identical, an uncountably infinite set

of infinitesimal perturbations of the potential systemcause instability.

When experimental and/or simulation results on real-life systems

show a small, or minute, discrepancy between two frequencies of

vibration, then a uncountably infinite set of correspondingly small, or

minute, perturbations guarantee instability of the entire potential

system. And, what is exactly meant by small discrepancies and small

perturbations is precisely defined.
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